EUt+ Mobility
Go back

Course Page ✏️


Scientific computing platforms
211101016

Description
Block I.- Languages ​​for data science.
1. Characteristics of data science-oriented languages: Matlab, Python
and R.
2. Matlab for scientific computing. Data structures. Multithreaded parallelization and
on GPU. Batch mode. Cluster parallelization.
3. Python for scientific computing. Data structures. Parallelization
multiprocess. Cluster parallelization.

Block II.- Version control and cloud computing
1. Introduction to version control.
2. Introduction to Git. Version control with GitKraken
3. Online repositories and collaborative development: Github, Gitlab, Bitbucket
4. Cloud computing services (Microsoft Azure, Amazon AWS, Google
Cloud), virtualization and deployment.

Block III.- Frameworks for data science and machine learning
1. Data structures and analysis: SciPy (numpy, matplotlib, pandas)
2. Machine learning: Scikit-learn
3. Deep Learning: keras, tensorflow

ECTS credits
3

Teaching Language
Español

Exam Language
Español

Support Materials Language
Español

Basic Learning Outcomes

Managing Entity (faculty)