Block I.- Introduction to Machine Learning
1.1. Introduction
1.2. Machine Learning
1.3. Neural Networks
1.3.1. Multilayer Perceptron (MLP)
1.3.2. Radial Basis Function (RBF) Networks
1.4. Evaluation and Applications
Block II.- Introduction to Deep Learning
2.1 Introduction
2.2 Progressive deep networks
23. Regularization and optimization of deep networks
2.4. Top deep networks
2.4.1. Autoencoders
2.4.2. Convolutional Networks