EUt+ Mobility
Go back

Course Page ✏️


Mathematical Methods for Engineering
94792

Description
Course Program

  • Definitions of Sigma Algebra, Measure Space and of Positive Measure. 
  • Measurable Functions. 
  • Theorems of Beppo Levi, Fatou and of Dominated Convergence of Lebesgue. 
  • Measure and Lebesgue Integral in Rn.
  • Inequalities of Hölder, Minkowski, Jensen. 
  • Notions on Lp Spaces. 
  • Notions on Convolution in Rn. 
  • Functions of Complex Variable. 
  • Complex Paths. 
  • Integral along a Complex Path. 
  • Holomorphic Functions. 
  • Cauchy-Riemann Conditions. 
  • Main Holomorphic Functions and their Domain. 
  • Points of Singularity and their Classification. 
  • Cauchy’s Theorem. 
  • Cauchy’s Integral Formula. 
  • Series Expansions in Taylor and Laurent. 
  • Theorem of Residues. 
  • Applications to Integral Calculus. 
  • Fourier Transform and its Applications. 
  • Laplace Transform and its Applications. 
  • Zeta Transform and its Applications. 

ECTS credits
9

Teaching Language
italiano

Exam Language
italiano

Support Materials Language
italiano

Basic Learning Outcomes

Managing Entity (faculty)