Objectives
The course provides the skills for the use of the modern numerical techniques for the analysis of complex heat transfer phenomena. Beside the mathematical references and investigation of concepts inherent complex heat transfer phenomena, during the course will be presented the algorithms usually employed for the solution of the mass, momentum and energy conservation equations. An extensive computer activity in the computational laboratory will be carried out during the course, with the aim of numerically modeling problems of practical interest by using commercial numerical codes.
Syllabus
References on basic and combined heat transfer mechanism; finned systems; references on the preliminary theoretical concepts on fluid-dynamic, Eulerian and Lagrangian descriptions of a fluid system; Reynolds transport theorem, mass, momentum and energy conservation equations and constitutive relations; laminar and turbulent flows; Reynolds averaged Navier-Stokes (RANS) equations and closure models for turbulent flows.
Numerical methods for the solution of Partial Differential Equations (PDEs): finite differences, finite volumes and finite elements methods.